unsupervised classification with R

unsupervised classification with R

m

January 29, 2016

Here we see three simple ways to perform an unsupervised classification on a raster dataset in R. I will show these approaches, but first we need to load the relevant packages and the actual data. You could use the Landsat data used in the “Remote Sensing and GIS for Ecologists” book which can be downloaded here.

library("raster")  
library("cluster")
library("randomForest")

# loading the layerstack  
# here we use a subset of the Landsat dataset from "Remote Sensing and GIS for Ecologists" 
image <- stack("path/to/raster")
plotRGB(image, r=3,g=2,b=1,stretch="hist")

RGBimage

Now we will prepare the data for the classifications. First we convert the raster data in a matrix, then we remove the NA-values.

## returns the values of the raster dataset and write them in a matrix. 
v <- getValues(image)
i <- which(!is.na(v))
v <- na.omit(v)

The first classification method is the well-known k-means method. It separates n observations into  k clusters. Each observation belongs to the cluster with the nearest mean.

## kmeans classification 
E <- kmeans(v, 12, iter.max = 100, nstart = 10)
kmeans_raster <- raster(image)
kmeans_raster[i] <- E$cluster
plot(kmeans_raster)

Kmeans

The second classification method is called clara (Clustering for Large Applications). It work by clustering only a sample of the dataset and then assigns all object in the dataset to the clusters.

## clara classification 
clus <- clara(v,12,samples=500,metric="manhattan",pamLike=T)
clara_raster <- raster(image)
clara_raster[i] <- clus$clustering
plot(clara_raster)

clara

The third method uses a random Forest model to calculate proximity values. These values were clustered using k-means. The clusters are used to train another random Forest model for classification.

## unsupervised randomForest classification using kmeans
vx<-v[sample(nrow(v), 500),]
rf = randomForest(vx)
rf_prox <- randomForest(vx,ntree = 1000, proximity = TRUE)$proximity

E_rf <- kmeans(rf_prox, 12, iter.max = 100, nstart = 10)
rf <- randomForest(vx,as.factor(E_rf$cluster),ntree = 500)
rf_raster<- predict(image,rf)
plot(rf_raster)

randomForest

The three classifications are stacked into one layerstack and plotted for comparison.

class_stack <- stack(kmeans_raster,clara_raster,rf_raster)
names(class_stack) <- c("kmeans","clara","randomForest")

plot(class_stack)

Comparing the three classifications:

Looking at the different classifications we notice, that the kmeans and clara classifications have only minor differences.
The randomForest classification shows a different image.

 

want to read more about R and classifications? check out this book:

you may also like:

Spatial R Packages Showcase by our EAGLE students

Spatial R Packages Showcase by our EAGLE students

We are very proud to share the diverse submissions of spatial R packages within the EAGLE M.Sc. course of Ariane Droin and Martin Wegmann aiming at advancing our students' knowlege about programming for environmental analysis, geospatial visualization, and ecological...

NetCDA acitivities at EGU

NetCDA acitivities at EGU

We had a wonderful day yesterday at the EGU with NetCDA. We were pleasantly surprised by the great interest in climate-related capacity development activities in Africa. Throughout the day, we engaged in enriching discussions with many inspiring colleagues from a wide...

A full day of NetCDA activities at the EGU

A full day of NetCDA activities at the EGU

The first part of our EGU activities today has been successfully concluded. We had nine excellent presentations presenting various capacity development projects in cooperation between Europe and Africa on the topic of climate change. We're looking forward to the...

Invited Talk at the University of Zurich

Invited Talk at the University of Zurich

EORC PI Florian Betz was invited by the group of Remote Sensing of Environmental Changes at the University of Zurich to talk about his research on satellite time series based analysis of river systems. The visit was a great opportunity to exchange ideas and elaborate...

Snow and ice research in the Arctic

Snow and ice research in the Arctic

Our colleagues Dr. Mirjana Bevanda and Dr. cand. Jakob Schwalb-Willmann recently conducted another UAS-based fieldwork in the Arctic, focusing on temporal variability of snow and ice property. Utilizing VTOL UAS platforms equipped with LiDAR, multispectral, and...