New R package: RStoolbox: Tools for Remote Sensing Data Analysis

New R package: RStoolbox: Tools for Remote Sensing Data Analysis

m

September 18, 2015

RStoolbox_RemoteSensing_Ecology_Benjamin_LeutnerWe are happy to announce the initial release of our *RStoolbox* package. The package has been developed by our PhD student Benjamin Leutner and will be used extensively in the upcoming book “Remote Sensing and GIS for Ecologists – Using Open Source software“.
RStoolbox provides various tools for remote sensing data analysis and is now available from CRAN:

https://cran.r-project.org/web/packages/RStoolbox

and more details at:

http://bleutner.github.io/RStoolbox/rstbx-docu


 

The main focus of RStoolbox is to provide a set of high-level remote sensing tools for various classification tasks. This includes unsupervised and supervised classification with different classifiers, fractional cover analysis and a spectral angle mapper. Furthermore, several spectral transformations like vegetation indices, principal component analysis or tasseled cap transformation are available as well.

Besides that, we provide a set of data import and pre-processing functions. These include reading and tidying Landsat meta-data, importing ENVI spectral libraries, histogram matching, automatic image co-registration, topographic illumination correction and so on.

Last but not least, RStoolbox ships with two functions dedicated to plotting remote sensing data (*raster* objects) with *ggplot2* including RGB color compositing with various contrast stretching options.

RStoolbox is built on top of the *raster* package. To improve performance some functions use embedded C++ code via the *Rcpp* package.
Moreover, most functions have built-in support for parallel processing, which is activated by running raster::beginCluster() beforehand.

 

RStoolbox is hosted at www.github.com/bleutner/RStoolbox

For a more details, including executed examples, please see

http://bleutner.github.io/RStoolbox/rstbx-docu

 

We sincerely hope that this package may be helpful for some people and are looking forward to any feedback, suggestions and bug reports.

you may also like:

Our research introduced to the JMU president Pauli

Our research introduced to the JMU president Pauli

At the Center for Artificial Intelligence and Data Science (CAIDAS) opening last Friday on 18th of April 2024, we had the opportunity to present the research of our Earth Observation Research Cluster (EORC) and of the Earth Observation Center (EOC) of the German...

UAS mission of monastery Bronnbach

UAS mission of monastery Bronnbach

The potential of UAS data for mapping cultural heritage sites was discussed in the past months with colleagues associated with the UNESCO world heritage activities by our postdocs Dr. Mirjana Bevanda and Dr. Sarah Schönbrodt-Stitt. Based on these discussions further...

Internship Report on Tuesday, April 30 at 14:00

Internship Report on Tuesday, April 30 at 14:00

On Tuesday, April 30 Konstantin Müller will present his internship " GDELT News Analysis of the Noto Earthquake via ERNIE" at 14:00 in 01.B.03, John-Skilton-Str. 4a. : From the abstract: The analysis of socioeconomic data has gained increasing importance. The exchange...

Internship Report on Tuesday, April 23 at 12:00

Internship Report on Tuesday, April 23 at 12:00

On Tuesday, April 23rd Elly Schmid will present her internship at 12:00 in seminar room 3, John-Skilton-Str. 4a. : From the abstract: The internship was carried out as part of the HEATS-(Urban heat) Project of the Georisks team at the Earth Observation Center, which...

New building for the CAIDAS AI center opened

New building for the CAIDAS AI center opened

CAIDAS, the Center for Artificial Intelligence and Data Science ( https://www.caidas.uni-wuerzburg.de/ ), was officially opened on April 19, 2024 with prominent guests from politics and science.  Bavaria's Minister of Science Markus Blume cut the ribbon for the new...