New R package: RStoolbox: Tools for Remote Sensing Data Analysis

New R package: RStoolbox: Tools for Remote Sensing Data Analysis

m

September 18, 2015

RStoolbox_RemoteSensing_Ecology_Benjamin_LeutnerWe are happy to announce the initial release of our *RStoolbox* package. The package has been developed by our PhD student Benjamin Leutner and will be used extensively in the upcoming book “Remote Sensing and GIS for Ecologists – Using Open Source software“.
RStoolbox provides various tools for remote sensing data analysis and is now available from CRAN:

https://cran.r-project.org/web/packages/RStoolbox

and more details at:

http://bleutner.github.io/RStoolbox/rstbx-docu


 

The main focus of RStoolbox is to provide a set of high-level remote sensing tools for various classification tasks. This includes unsupervised and supervised classification with different classifiers, fractional cover analysis and a spectral angle mapper. Furthermore, several spectral transformations like vegetation indices, principal component analysis or tasseled cap transformation are available as well.

Besides that, we provide a set of data import and pre-processing functions. These include reading and tidying Landsat meta-data, importing ENVI spectral libraries, histogram matching, automatic image co-registration, topographic illumination correction and so on.

Last but not least, RStoolbox ships with two functions dedicated to plotting remote sensing data (*raster* objects) with *ggplot2* including RGB color compositing with various contrast stretching options.

RStoolbox is built on top of the *raster* package. To improve performance some functions use embedded C++ code via the *Rcpp* package.
Moreover, most functions have built-in support for parallel processing, which is activated by running raster::beginCluster() beforehand.

 

RStoolbox is hosted at www.github.com/bleutner/RStoolbox

For a more details, including executed examples, please see

http://bleutner.github.io/RStoolbox/rstbx-docu

 

We sincerely hope that this package may be helpful for some people and are looking forward to any feedback, suggestions and bug reports.

you may also like:

HABITRACK: New Project for Predicting Vector-Borne Diseases

HABITRACK: New Project for Predicting Vector-Borne Diseases

We are very pleased to announce the successful acquisition of the third-party funded BMFTR project HABITRACK. The proposal was led on the EORC side by Ariane Droin and Hannes Taubenböck, together with strong partners from research, medicine, and public health:...

Successful PhD defense by Patrick Sogno

Successful PhD defense by Patrick Sogno

We congratulate our PhD student Patrick Sogno on his successful defense of his PhD thesis. The thesis is titled „Remote Sensing of Water Surface Dynamics in Africa“, from the abstract: