Jakob Schwalb-Willmann just started his M.Sc. thesis titled “A deep learning movement prediction model using environmental data to identify movement anomalies”. He will combine animal movement and remote sensing data in order to develop a generic, data-driven DL-based model that predicts movements from movement history alongside environmental covariates in order to detect movement anomalies. He will establish simulated, controlled environments that allow precise adjustments of the model inputs to test the model’s feedbacks and its variability. It can be considered as a precursor study for the model’s deployment on real data and to only experimentally apply it on such due to the given constraints (time and content) of his M.Sc. thesis.
Welcome to Our New EAGLEs – Embarking on an Earth Observation Journey
As the autumn term begins and the leaves turn golden across Europe, we are pleased to welcome a fresh cohort of EAGLEs—our new MSc students in Earth Observation and Geoinformatics. This year’s group brings together curious minds from diverse academic and cultural...