MSc handed in on impact of remote sensing for biodiversity monitoring

MSc handed in on impact of remote sensing for biodiversity monitoring

May 4, 2016

figure23_mangrove_degradation_AnnaStephanieAnna Stephanie handed in her MSc thesis on “Impact of remote sensing characteristics for biodiversity monitoring”. Very impressive study on multi-scale, multi-model and multi-variable analysis of mangroves in Myanmar.

While Myanmar is one of the world’s hotspots for biodiversity and endemism, it is currently undergoing enormous political and economic transformations which are likely to increase the pressure on its already endangered forest ecosystems. In this context, mangrove forests are of particular relevance, as they are not only among the Earth’s most imperiled tropical environments, but also provide numerous ecosystem services to humanity. To ensure an ecologically worthwhile management of mangrove ecosystems, it is necessary that inventories are undertaken on a regular basis. Remote sensing offers a cost efficient and rapid method to periodically monitor mangrove forests. However, the current availability of various sensor types and different classification methods complicateswell-informed selection of the most appropriate methodology for an effective biodiversity monitoring. In order to assist applied ecologists in this highly complex decision-making process, this study compared the suitability of medium-resolution Landsat 8 and high-resolution RapidEye imagery to accurately monitor mangrove forests. Spatial and spectral resolution, classification algorithms and different predictor combinations were investigated as influencing elements. A multi-scale classification approach was developed to account for the fact that biodiversity monitoring for conservation is typically conducted on numerous spatial scales ranging from local to global perspectives. By formulating recommendation for practitioners, this study’s aim was to bridge the gap between research and its implementation in applied conservation. Results of the analysis showed that medium-resolution Landsat 8 imagery mostly leads to higher classification accuracies than high-resolution RapidEye data in the context of mangrove mapping in Southern Myanmar. The comparison of different predictor combinations suggested, that this difference is mainly attributable to the additional spectral bands provided by the Landsat 8 sensor. By investigating RapidEye images with spatial resolutions of 5 – 30 meters, it was discovered that overall classification accuracies increased with coarser spatial resolution regarding the majority of land cover classes. Moreover, the accuracy of land cover predictions was strongly influenced by the choice of specific classification algorithms as well as the number and characteristics of predictor layers. Referring to the main findings of this study, the application of medium-resolution Landsat 8 data is recommended to applied conservationists. This is based on its superior performance in most of the classifications as well as on its cost-free availability.
a

you may also like:

Exploring Wetland Ecosystems in the Rhön Biosphere Reserve

Exploring Wetland Ecosystems in the Rhön Biosphere Reserve

As part of our ongoing collaboration with our EOCap4Africa project partners, two members of the EORC (Dr. Insa Otte, Lilly Schell) at the University of Würzburg recently took a field trip to the Rhön Biosphere Reserve with our visiting scientists. We visited two...

Spring Vibes on Our Lunch Break

Spring Vibes on Our Lunch Break

With the first warm days of spring finally arriving, a small fraction of our team already took full advantage of the sunshine during lunch break—gathering outside to soak up the mild weather and enjoy a few well-earned moments of relaxation. Some of us have just...

Terrabyte Workshop at EORC

Terrabyte Workshop at EORC

Tag: Meeting, Workshop Terrabyte Workshop at EORC This week, a two-day terrabyte workshop took place at EORC (Earth Observation Research Cluster), hold by staff members of DLR ( Dr. Jonas Eberle, Julian Zeidler, Peter Zellner). Thanks to many hours of presentations...

Lallu Nikerthil Prathapan  successfully defended her master thesis

Lallu Nikerthil Prathapan successfully defended her master thesis

Today, our EAGLE student Lallu Nikerthil Prathapan defended her master thesis successfully. The master thesis is titled: “Revealing Inconsistencies in Population Datasets in Refugee and IDP Camps”.   Here is the abstract of the thesis: Accurate gridded population...