Extracting the central strip from LANDSAT 7 imagery

Extracting the central strip from LANDSAT 7 imagery

February 8, 2016

Here is a simple Python code to extract the central strip from Landsat 7 imagery (SLC-off),  that is not affected by the SLC failure. The algorithm shrinks the striping zones through a morphological filter (erosion) and creates a new shapefile AOI that extracts the desired raster extent without striping effects. The code is based on Python for ArcGIS (arcpy) – so you require a ArcGIS license.

General steps:

  1. Loop through all Landsat 7 data folders
  2. Stack bands for each image
  3. Create a mask
  4. Erode the mask by 20 pixels
  5. Convert the mask to polygon
  6. Create a minimum bounding box
  7. Clip the original raster through the bbox

 

import arcpy
from arcpy.sa import *

import sys,os

#  Environment settings (Activate Spatial Analyst, Overwrite Outputs allowed and TIFF compression is LZW)
arcpy.CheckOutExtension("spatial")
arcpy.env.overwriteOutput = True
arcpy.env.compression = 'LZW'

# this is your main directory with all unzipped Landsat datasets
 rootdir = "D:\\DATA\\Landsat7\\"

# create scratch folder "temp" 
temp = "D:\\DATA\\temp\\"

# loop through directory with all unzipped Landsat 7 folders
 for files in os.listdir(rootdir):   
    files = os.path.join(rootdir, files)   
    
    # for each loop the subdir "files" is now the current workspace 
    # (e.g. LE71520322015157-SC20160224113319) that contains the Landsat bands
    arcpy.env.workspace = files  
    rasters = arcpy.ListRasters("*", "TIF")  
    
    # create empty array
    stack_liste = []  
    # loop through all rasters in subdir
    for raster in rasters:   

        image = arcpy.Raster(raster) 
        name  = image.name 
        index = name.split("_")[0]  

        # fill up the array only with the actual spectral bands        
        sr = "_sr_band"  
        if sr in raster:   
            stack_liste.append(raster)             

    # now stack all bands within the array
    stack_name = files + "\\" + index + "_stack.tif"    
    arcpy.CompositeBands_management(stack_liste, stack_name)  

    # convert the image stack to a mask by logical operation with an absurd value that will result in an output "0"
    con = EqualTo(stack_name, 123456789)  

    # now shrink the raster mask with value "0" by 20 pixels
    shrink = temp + "shrink"  
    shrinking = Shrink(con, 20, 0) 
    shrinking.save(shrink)  

    zone = temp + "zone.shp" 
    bbox = temp + "bbox.shp"  

    # conver the shrunk mask to polygon and create a minimum bounding box
    arcpy.RasterToPolygon_conversion(shrink, zone, "NO_SIMPLIFY", "VALUE") 
    arcpy.MinimumBoundingGeometry_management(zone, bbox, "RECTANGLE_BY_WIDTH", "NONE")  

    # now use that bounding box as a mask to cut out the central nadir strip from the original stack
    # Final result 
    extract = files + "\\" + index + "_aoi.tif"  
    ExtractByMask = arcpy.sa.ExtractByMask(stack_name, bbox) 
    ExtractByMask.save(extract)

 

you may also like:

MainPro Project Meeting: Next Project Phase Launched

MainPro Project Meeting: Next Project Phase Launched

On Friday, November 21st, a MainPro project meeting was held to exchange ideas with our cooperating small and medium-sized enterprises (SMEs). Within our MainPro project, we aim to identify the changes caused by climate change in the Main Valley and its surroundings...

Our EAGLE Coffee Meeting

Our EAGLE Coffee Meeting

At the beginning of each semester, we hold a series of small and informal EAGLE coffee meetings—a moment for new (and old) students to meet with our EAGLE admin and EORC staff members (also former international EAGLEs) in a relaxed atmosphere and ease into the rhythm...

EORC Staff Complete Joint First Aid Training

EORC Staff Complete Joint First Aid Training

Today, staff from the EORC successfully completed a joint first aid course held in our department. During the training, participants learned the essential methods needed to assist colleagues and students in case of injuries. The course covered practical techniques,...

HABITRACK: New Project for Predicting Vector-Borne Diseases

HABITRACK: New Project for Predicting Vector-Borne Diseases

We are very pleased to announce the successful acquisition of the third-party funded BMFTR project HABITRACK. The proposal was led on the EORC side by Ariane Droin and Hannes Taubenböck, together with strong partners from research, medicine, and public health:...