7 R-tips for Rookies

7 R-tips for Rookies

m

May 19, 2019

A short course in R helps to get in touch with the software and to overcome some beginner’s problems. It motivates to use the software and makes starting easier. However, it only can give an overview of what is actually possible. Let’s be honest: Taking part in a course does seldomly mean, that you can handle the learned software. Upcoming questions are “How to continue?” and “What to do next?”

The following tips are a compilation of (only few) resources on how to continue coding in R – especially as a student.

Tip 1: Spatial Data Science with R
For analyzing spatial data (e.g. rasters such as EO data or shapefiles) I highly recommend to check out
(1) Robert J. Hijmans’ webpage 
You can start from scratch with an Introduction to R and learn about basic data types, structures or functions or you can dive directly into Remote Sensing Image Analysis 
All webpages were updated recently and come with pdf versions.
(2) Geocomputation with R written by Robin Lovelace, Jakub Nowosad, Jannes Muenchow.

Tip 2: Repeat an already finished GIS student project in R
You will learn any software having a lot more fun if you have a specific task in mind. No matter which software you used for your last term’s student project, repeat it in R. You have already elaborated the topic, you are familiar with the data and you know the workflow you have to follow. Then re-write your seminar paper in R markdown.

Tip 3: Use R for your next seminar paper
No matter if you need a graphic, a map or a table, try to make it in R. Presenting self-made figures is always better than copying from another source.
If you do not know where to get data, have a look at the R package eurostat (brand new!) and the data sources of the UN SDG Data Hub, ESA’s Thematic Exploitation Platforms or Copernicus Programme, and many more. Robin Wilson offers a comprehensive list on free data.

Tip 4: Make use of other people’s knowledge
Describe your problem in your own words, specify your question. Read the error message thrown by a function carefully! Get in touch with your peers. If there is no one to talk to: You will find it online, search for it! A good source is stackoverflow. Always keep in mind: Every R user was a Rookie once and there won’t be any question that wasn’t asked – and answered – before.

Tip 5: Use the cheatsheets
Cheatsheets will help you to get an overview of a package’s functionalities and make it easy to learn and use them. R Studio offers a variety of cheatsheets and you can find even more user contributions: https://www.rstudio.com/resources/cheatsheets/

Tip 6: Use GUIs to understand syntax
RCommander and ggplotgui are only two graphical user interfaces that allow for an easy and intuitive get in touch with syntax. Both will provide R code that you can implement within your R scripts. Ggplotgui also offers an online functionality.

Tip 7: Learn about R best practices
Read Krista L. DeStasio recently has written a guide to R Best practices including a lot of further reading links. Have a look at her blog, read it and don’t worry if you don’t understand everything. Come back to the text later and try again.

R is among the most popular and versatile programming languages in spatial sciences. Packages such as raster or RStoolbox as well as various shared lines of code on GitHub (e.g. getSpatialData) makes it easy to analyse EO data; ggplot2 and R Markdown allow for showing the results in documents or presentations which makes it extremely helpful for professionals as well as students.

you may also like:

New PhD student Adomas Liepa

New PhD student Adomas Liepa

I started my academic career in Bergen, Norway where I studied geophysics. During my bachelor's degree I became more interested in Earth's surface and surface dynamics, rather than the interior of the Earth, which is what geophysics focuses on. After obtaining my...

Merry Christmas and a Happy New Year 2021

Merry Christmas and a Happy New Year 2021

An unprecedented year with various unexpected events and many required changes had to be managed by our department like by many other organizations as well. A challenging year is coming to an end. We at the Department of Remote Sensing at the University of Würzburg...

most recent news:

New researcher Pawel Kluter

New researcher Pawel Kluter

Pawel Kluter joined the Department of Remote Sensing as a Research Associate in November 2020. His main role is the deployment of Data Cubes in cloud environments (Front End / Back End), as well as the development of remote sensing processing routines using Python....

New PostDoc Dr Insa Otte

New PostDoc Dr Insa Otte

We are very happy to welcome Insa Otte at the Department of Remote Sensing as a new research fellow. Before joining the department, Insa worked on rainfall in-situ data and focused on extreme events. But generally, she has a great interest and experience in...